scala> import org.apache.spark.storage.StorageLevel
import org.apache.spark.storage.StorageLevel
scala> val lines = sc.textFile("hdfs:///user/raj/data.txt", 3)
lines: org.apache.spark.rdd.RDD[String] = hdfs:///user/raj/data.txt MapPartitionsRDD[1] at textFile at <console>:28
scala> // No of partitions
scala> lines.partitions.size
res0: Int = 3
scala> // flatMap() : One of many transformation
scala> val words = lines.flatMap(x => x.split(" "))
words: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[2] at flatMap at <console>:30
scala> // Persist the data
scala> val units = words.map ( word => (word, 1) ).
| persist(StorageLevel.MEMORY_ONLY)
units: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[3] at map at <console>:32
scala>
scala> val counts = units.reduceByKey ( (x, y) => x + y )
counts: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[4] at reduceByKey at <console>:34
// Text file is read to compute the 'counts' RDD
scala> counts.toDebugString
res1: String =
(3) ShuffledRDD[4] at reduceByKey at <console>:34 []
+-(3) MapPartitionsRDD[3] at map at <console>:32 []
| MapPartitionsRDD[2] at flatMap at <console>:30 []
| hdfs:///user/raj/data.txt MapPartitionsRDD[1] at textFile at <console>:28 []
| hdfs:///user/raj/data.txt HadoopRDD[0] at textFile at <console>:28 []
scala> // First Action
scala> counts.collect()
res2: Array[(String, Int)] = Array((another,1), (This,2), (is,2), (a,1), (test,2))
scala> val counts2 = units.reduceByKey((x, y) => x * y)
counts2: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[5] at reduceByKey at <console>:34
// Cache value is read to compute the 'counts2' RDD
scala> counts2.toDebugString
res3: String =
(3) ShuffledRDD[5] at reduceByKey at <console>:34 []
+-(3) MapPartitionsRDD[3] at map at <console>:32 []
| CachedPartitions: 3; MemorySize: 696.0 B; ExternalBlockStoreSize: 0.0 B; DiskSize: 0.0 B
| MapPartitionsRDD[2] at flatMap at <console>:30 []
| hdfs:///user/raj/data.txt MapPartitionsRDD[1] at textFile at <console>:28 []
| hdfs:///user/raj/data.txt HadoopRDD[0] at textFile at <console>:28 []
scala> // Second Action
scala> counts2.collect()
res4: Array[(String, Int)] = Array((another,1), (This,1), (is,1), (a,1), (test,1))
18 June 2016
A Word Count Example with Cached Partition
Broadcast Variable Example
scala> // Sending a value from Driver to Worker Nodes without scala> // using Broadcast variable scala> val input = sc.parallelize(List(1, 2, 3)) input: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[17] at parallelize at <console>:27 scala> val localVal = 2 localVal: Int = 2 scala> val added = input.map( x => x + localVal) added: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[18] at map at <console>:31 scala> added.foreach(println) 4 3 5 scala> //** Local variable is once again transferred to worked nodes scala> // for the next operation scala> val multiplied = input.map( x => x * 2) multiplied: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[19] at map at <console>:29 scala> multiplied.foreach(println) 4 6 2
scala> // Sending a read-only value using Broadcast variable scala> // Can be used to send large read-only values to all worker scala> // nodes efficiently scala> val broadcastVar = sc.broadcast(2) broadcastVar: org.apache.spark.broadcast.Broadcast[Int] = Broadcast(14) scala> val added = input.map(x => broadcastVar.value + x) added: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[20] at map at <console>:31 scala> added.foreach(println) 5 3 4 scala> val multiplied = input.map(x => broadcastVar.value * x) multiplied: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[21] at map at <console>:31 scala> multiplied.foreach(println) 6 4 2 scala>
28 May 2016
A Word Count example using 'spark-shell'
[raj@Rajkumars-MacBook-Pro ~]$spark-shell --master local[*]
2016-05-28 15:37:24.325 java[3907:6309927] Unable to load realm info from SCDynamicStore
Welcome to
____ __
/ __/__ ___ _____/ /__
_\ \/ _ \/ _ `/ __/ '_/
/___/ .__/\_,_/_/ /_/\_\ version 1.6.1
/_/
Using Scala version 2.10.5 (Java HotSpot(TM) 64-Bit Server VM, Java 1.7.0_45)
Type in expressions to have them evaluated.
Type :help for more information.
Spark context available as sc.
SQL context available as sqlContext.
scala> val lines = sc.parallelize(List("This is a word", "This is another word"), 7)
lines: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[0] at parallelize at :27
scala> // No of partitions
scala> lines.partitions.size
res0: Int = 7
scala> // flatMap() : One of many transformation
scala> val words = lines.flatMap(line => line.split(" "))
words: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[1] at flatMap at :29
scala> val units = words.map ( word => (word, 1) )
units: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[2] at map at :31
scala> val counts = units.reduceByKey ( (x, y) => x + y )
counts: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[3] at reduceByKey at :33
scala> counts.toDebugString
res1: String =
(7) ShuffledRDD[3] at reduceByKey at :33 []
+-(7) MapPartitionsRDD[2] at map at :31 []
| MapPartitionsRDD[1] at flatMap at :29 []
| ParallelCollectionRDD[0] at parallelize at :27 []
scala> // collect() : One of many actions
scala> counts.collect()
res2: Array[(String, Int)] = Array((This,2), (is,2), (another,1), (a,1), (word,2))
04 May 2016
Accumulator : Example
Note : Use Accumulator only in action to get correct values. Do not use Accumulator in Transformation ; Use it only for debugging purpose in Transformation
scala> val input = sc.parallelize(List(1, 2, 3, 4, 5,
| 6, 7, 8, 9, 10,
| 11, 12, 13, 14, 15
| ))
input: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:27
scala> println("No of partitions -> " + input.partitions.size)
No of partitions -> 8
scala> val myAccum = sc.accumulator(0, "My Accumulator")
myAccum: org.apache.spark.Accumulator[Int] = 0
scala> // Used inside an action
scala> input.foreach{ x =>
| //Thread.sleep(50000)
| myAccum += 1
| }
scala> println("myAccum -> " + myAccum.value)
myAccum -> 15
c15 > a15
Subscribe to:
Comments (Atom)