- scala> import org.apache.spark.storage.StorageLevel
- import org.apache.spark.storage.StorageLevel
- scala> val lines = sc.textFile("hdfs:///user/raj/data.txt", 3)
- lines: org.apache.spark.rdd.RDD[String] = hdfs:///user/raj/data.txt MapPartitionsRDD[1] at textFile at <console>:28
- scala> // No of partitions
- scala> lines.partitions.size
- res0: Int = 3
- scala> // flatMap() : One of many transformation
- scala> val words = lines.flatMap(x => x.split(" "))
- words: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[2] at flatMap at <console>:30
- scala> // Persist the data
- scala> val units = words.map ( word => (word, 1) ).
- | persist(StorageLevel.MEMORY_ONLY)
- units: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[3] at map at <console>:32
- scala>
- scala> val counts = units.reduceByKey ( (x, y) => x + y )
- counts: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[4] at reduceByKey at <console>:34
- // Text file is read to compute the 'counts' RDD
- scala> counts.toDebugString
- res1: String =
- (3) ShuffledRDD[4] at reduceByKey at <console>:34 []
- +-(3) MapPartitionsRDD[3] at map at <console>:32 []
- | MapPartitionsRDD[2] at flatMap at <console>:30 []
- | hdfs:///user/raj/data.txt MapPartitionsRDD[1] at textFile at <console>:28 []
- | hdfs:///user/raj/data.txt HadoopRDD[0] at textFile at <console>:28 []
- scala> // First Action
- scala> counts.collect()
- res2: Array[(String, Int)] = Array((another,1), (This,2), (is,2), (a,1), (test,2))
- scala> val counts2 = units.reduceByKey((x, y) => x * y)
- counts2: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[5] at reduceByKey at <console>:34
- // Cache value is read to compute the 'counts2' RDD
- scala> counts2.toDebugString
- res3: String =
- (3) ShuffledRDD[5] at reduceByKey at <console>:34 []
- +-(3) MapPartitionsRDD[3] at map at <console>:32 []
- | CachedPartitions: 3; MemorySize: 696.0 B; ExternalBlockStoreSize: 0.0 B; DiskSize: 0.0 B
- | MapPartitionsRDD[2] at flatMap at <console>:30 []
- | hdfs:///user/raj/data.txt MapPartitionsRDD[1] at textFile at <console>:28 []
- | hdfs:///user/raj/data.txt HadoopRDD[0] at textFile at <console>:28 []
- scala> // Second Action
- scala> counts2.collect()
- res4: Array[(String, Int)] = Array((another,1), (This,1), (is,1), (a,1), (test,1))
18 June 2016
A Word Count Example with Cached Partition
Broadcast Variable Example
- scala> // Sending a value from Driver to Worker Nodes without
- scala> // using Broadcast variable
- scala> val input = sc.parallelize(List(1, 2, 3))
- input: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[17] at parallelize at <console>:27
- scala> val localVal = 2
- localVal: Int = 2
- scala> val added = input.map( x => x + localVal)
- added: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[18] at map at <console>:31
- scala> added.foreach(println)
- 4
- 3
- 5
- scala> //** Local variable is once again transferred to worked nodes
- scala> // for the next operation
- scala> val multiplied = input.map( x => x * 2)
- multiplied: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[19] at map at <console>:29
- scala> multiplied.foreach(println)
- 4
- 6
- 2
- scala> // Sending a read-only value using Broadcast variable
- scala> // Can be used to send large read-only values to all worker
- scala> // nodes efficiently
- scala> val broadcastVar = sc.broadcast(2)
- broadcastVar: org.apache.spark.broadcast.Broadcast[Int] = Broadcast(14)
- scala> val added = input.map(x => broadcastVar.value + x)
- added: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[20] at map at <console>:31
- scala> added.foreach(println)
- 5
- 3
- 4
- scala> val multiplied = input.map(x => broadcastVar.value * x)
- multiplied: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[21] at map at <console>:31
- scala> multiplied.foreach(println)
- 6
- 4
- 2
- scala>
28 May 2016
A Word Count example using 'spark-shell'
- [raj@Rajkumars-MacBook-Pro ~]$spark-shell --master local[*]
- 2016-05-28 15:37:24.325 java[3907:6309927] Unable to load realm info from SCDynamicStore
- Welcome to
- ____ __
- / __/__ ___ _____/ /__
- _\ \/ _ \/ _ `/ __/ '_/
- /___/ .__/\_,_/_/ /_/\_\ version 1.6.1
- /_/
- Using Scala version 2.10.5 (Java HotSpot(TM) 64-Bit Server VM, Java 1.7.0_45)
- Type in expressions to have them evaluated.
- Type :help for more information.
- Spark context available as sc.
- SQL context available as sqlContext.
- scala> val lines = sc.parallelize(List("This is a word", "This is another word"), 7)
- lines: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[0] at parallelize at
:27 scala> // No of partitions scala> lines.partitions.size res0: Int = 7 scala> // flatMap() : One of many transformation scala> val words = lines.flatMap(line => line.split(" ")) words: org.apache.spark.rdd.RDD[String] = MapPartitionsRDD[1] at flatMap at :29 scala> val units = words.map ( word => (word, 1) ) units: org.apache.spark.rdd.RDD[(String, Int)] = MapPartitionsRDD[2] at map at :31 scala> val counts = units.reduceByKey ( (x, y) => x + y ) counts: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[3] at reduceByKey at :33 scala> counts.toDebugString res1: String = (7) ShuffledRDD[3] at reduceByKey at :33 [] +-(7) MapPartitionsRDD[2] at map at :31 [] | MapPartitionsRDD[1] at flatMap at :29 [] | ParallelCollectionRDD[0] at parallelize at :27 [] scala> // collect() : One of many actions scala> counts.collect() res2: Array[(String, Int)] = Array((This,2), (is,2), (another,1), (a,1), (word,2))
04 May 2016
Accumulator : Example
Note : Use Accumulator only in action to get correct values. Do not use Accumulator in Transformation ; Use it only for debugging purpose in Transformation
c15 > a15
- scala> val input = sc.parallelize(List(1, 2, 3, 4, 5,
- | 6, 7, 8, 9, 10,
- | 11, 12, 13, 14, 15
- | ))
- input: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:27
- scala> println("No of partitions -> " + input.partitions.size)
- No of partitions -> 8
- scala> val myAccum = sc.accumulator(0, "My Accumulator")
- myAccum: org.apache.spark.Accumulator[Int] = 0
- scala> // Used inside an action
- scala> input.foreach{ x =>
- | //Thread.sleep(50000)
- | myAccum += 1
- | }
- scala> println("myAccum -> " + myAccum.value)
- myAccum -> 15
Subscribe to:
Posts (Atom)